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INTRODUCTION 

Problems of entrainment of solids in pipes by flow of a viscous incompressi- /238* - 
ble liquid arise in the study qf motions of various suspensions, in particular, in 
the flow of blood through narrow capillaries. 

The problem of the motion of a sphere entrained by a viscous liquid in a 
cylindrical tube was solved in 111 in the Stokes approximation when the radius 
of the sphere is small in comparison with the radius of the tube. 

In the present article, we have given a numercial solution of the problem of 
entrainment of a cylindrical body by a viscous liquid in a circular tube in its 
precise formulation. The dimensions of the body were assumed to be commensura- 
ble with the radius of the tube. 

Consider the flow of a viscous incompressible liquid when there are  no 
gravitational forces in an infinite cylindrical tube of radius R under the action of 
a constant pressure gradient along the axis of the tube. At a certain instant of 
time, let us place a cylindrical body of radius A and length L on the aixs of the 
tube (see Fig. 1). It is rather obvious that, after a certain time required for 
establishment of motion, the body will move along the axis with a constant 
velocity V. The force acting on the body will be equal to zero and at both 
infinities the flow will be of the Poiseuille type. In a coordinate system rigidly 
connected with the walls of the tube, this flowwillbe unsteady-state. However, 
in a system of coordinates connected with the body, the flow will be steady-state. 
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The problem of entrainment of the solid by a viscous incompressible liquid 
reduces, therefore, to determination of the velocity of the inertial system of 
coordinates in which the solution of the corresponding boundary problem for the 
steady-state Navier-Stokes equations yields a force equal to zero acting on the 
solid. 

. .  
1. The Ehuations and Boundary Conditions 

The Navier-Stokes equations, which describe a steady-state motion of an 
incompressible viscous liquid in cylindrical coordinates can be put in the form 
[21 
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D g = a ,  
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where D is Stokes' operator 

Q is the current, Re is. the Reynolds number determined from the radius of the 
tube R,Ro = RVav / v, the average velocity Vav of the flow of the liquid at infinity 
(in the coordinate system cokected with the walls of the tube), and from the 
viscosity of the liquid' I/ 

All the quantities in Eq. (1) are dimensionless. Below, we shall write 
formulas giving the relation between dimensional and dimensionless quantities 
(the dimensional uantities in these formulas are indicated by bars or  by capital 
letters): 'p I 

- .-- .- 

2- Rx, P =  Rr, A =  Ra, - I 

- . -  
L:= Rl, $ = (Vav I 2)R". 

.. . _. 

4 We shall solve system (1) under 
boundary conditions listed below. These 
correspond to the case in which a cylin- 
drical body of radius a and length E moves 
with a constant velocity V along the axis 
of a tube within which a liquid is flowing. 
(The quantity V is dimensionless; the 
dimensional velocity is connected with 
the dimensionless velocity by ? = 

2)V. ) Here, the system of coordinates in 

. R I  I.-. v=+ .-.-. 

za 

, 

(%V' Figure 1. 

which the motion is considered is motionless with respect to the body: 
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By usingcentral differences, let us replace the differential equations with 
differences. We obtain I 

where $i, h - $(tu, kh)  and wit, - @(iff, Ich). 

Equations (9) hold for all values of i and k for which 
I 

, 
. -  

where Nh = a, &ZH = I, and the quantities E and F a re  chosen in suFh a way that their 
increase will have no effect on the solution obtained. 

I 

We need to coyple Eqs. (9) with other relations following from the boundary 
- __ 

conditions (4)-(8), namely, 
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Equations (17)-(20) are derived in a manner analogous to the derivation of the 
boundary conditions for a vortex in [ 3-51 , 

2. ' The Solution and the Results 

Equations (9) and (11)-(20) were solved by the method of successive approxi- 
W ( t u )  mations for a fixed value Vo of the quantity V. Suppose that $,,,, 0 i . h  - is the nth 

approximation to the values of the functions 9 and 0. Then, let us define the 

function 9 from the formulas 
/241 (n .C 1)st approximation as foilows: first, we calculate the new values of the - 

I 

Then, by using Eqs. (17)-(20), we calculate the new values of the function w at  
the boundary points, after which we calculate the new values of the function (ri at  
interior points of the region (that is, for those values of i and k for which the 
Boolean expression (10) is valid) from the formulas 

____-- -.I_ 

h 

This process continued as long as the following 

- - -  

inequality holds: 
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Figure 3. 
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where the summations are over those values of i and k for which the Boolean ex- 
pression (10) is valid. With regard to the quantities a and p (time steps), these 
were chosen in such a way that the fastest convergence of the process is assured. 
After inequality (21) is no longer satisfied, the problem for the given value of the 
velocity Vo, was considered solved and the force F1 acting on the body from the 
side of the liquid is calculated: 1 

Then, a new value of the velocity was calculated from the formula Vt = VO 

The process we have been describing continues as  long as vlll > 

yf. 

A s  

soon as  rltl becomes less than 
by the flow of an incompressible liquid is solved. We denote by Vent. the velocity 
at which Y 111 < 10-3, and we shall call it the transport velocity. 

the problem of the entrainment of the solid 

This computation was carried out on the BESM-6 computer. In the course 
of the calculation, the values of the parameters E, F, and G were made equal 
respectively to -16, 64, and 40. The value of the step h in all the calculations 
was made equal to 0.025. With regard to the step H, the calculations were made 

/24 2 - 
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mostly with H = 0.2 and 0.1. The values of Ventr obtained for H = 0.2 and 
H = 0.1 differed by less thad 0.1%. 

Figure 2 shows the field of flow in the case in which the solid is motionless 
with respect to the walls of the tube and Re = 2 {flow around the solid in the 
tube). Figure 3 shows the fields of flow in the case in which V = 3.92 (that is, 
the solid moves along the tube with a velocity just barely less than the maxi- 
mum velocity of the liquid at infinity) at Reynolds numbers Re = 2 and 20. 

Figure 4 shows the field of flow in the pase in which the velocity of the solid 
along the tube is equal to Ve& and Re = 40. 
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Figure 5 shows the dependence of 
the entrainment velocity on Re. The 
lower curve corresponds to the solid with- 
a = 0.5, z = 8 and the uppeqcurve to the 
solid with a = 0.5, I = 0.5,' 

solid with fixed solid length I and with Reynolds number Re = 2. Curve 1 cor- 
responds to z = 0.25, curve 2 to 1 = 0.5, and curve 3 to i = 4. 

- 
Figure 6. 

.- 

Figure 6 shows the dependence of the entrainment velocity on the radius of the 

The curves shown in Figures 5 and 6 indicate that in the range of Reynolds 
numbers a t  which there is steady-state flow, the entrainment velocity depends 
only slightly on the Reynolds number o r  the length of the solid. Obviously, the 
entrainment velocity is always less than the maximum velocity of the liquid at  
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infinity Vm = 2V 

velocity decreases monohoalically from Vm to Vav. 
and, a s  the radius of the solid is increased from 0 to 1,. this av 

I 
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